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Abstract: - Chaos synchronization of two quantum dot light emitting diodes (QDLEDs) theoretically is 
studied, which is delay coupled via a closed or open –loop and mutual coupling system. Whereas the 
synchronized- chaotic systems, the dynamics of there are identical to uncoupled DLED under optical 
feedback effect. Complete synchronization was obtained under certain conditions for the coupling 
parameters. We evaluated the range of the QDLED’s chaos with extrinsic optical feedback in methods 
of the chaos synchronization residue diagram and discussion as well of the coherence for the optimal 
coupling strength range. With proper conditions of the coupling parameters and the evaluation 
methods, the synchronization was satisfactorily obtained between the transmitter and receiver. 
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1 Introduction 

Control of complex dynamics within the past 
years has promoted as one of the major issues in 
applied nonlinear science [1]. Pioneer progress 
has been made in neuroscience, inter alia other 
areas, by widening, methods of chaos control, 
especially in time-delayed feedback, [2] this 
phenomenon occurs naturally in many 
biological systems, including neural networks, 
in which time delays are caused by delaying 
proliferation in neurons. [3-5]. Furthermore, 
delayed feedback loops are intentionally 
implemented for the purpose of controlling 
neurological disorders, for example, to get rid 
of unwanted synchronization in neural networks 
or to search for symmetrical behavior in 
communication [6-9]. Here, coupled delayed for 
two chaotic systems under optical feedback 
effect were studied. When complete optical 
coupling occurs in two QDLEDs, the effects of 
delay can not only be considered important, but 
the effects of coupling of both electric fields 
through phase coherence play an important role. 
Phase coupling of incoming signals may 

product the constructive or the destructive 
interference. When the signals synchronization, 
interference occur in cases where the coupling 
distance is much greater than the length of the 
beam cohesion. In this paper, the rate equations 
model of QDLED with the optical feedback is 
introduced. Next, is devoted to two estimate of 
the chaos synchronization and we investigated 
for different coupling schemes of the feedback. 
Then, we conclude with discuss the conditions 
of the coupling parameters for enhancing the 
behavior of the two QDLED systems, and the 
chaos synchronization between them. 

2 QDLED Optically feedback model   

For purpose the mode to describe the 
dynamics of QDLED with optical feedback, as 
we have a two-part device, the first consists of a 
spontaneous emission section that contains 
layers of self-organizing quantum dots( QDs )as 
an effective layer, and another section that 
represents a feedback by mirror to reflect light 
into the active layer. A model describing the 
spontaneous emission of QDLED has been 
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suggested by a microscope-based modified 
equation system as described in our most recent 
work. This model allows the treatment of 
electron transmission in layer of QDs as well as 
in the surrounding wetting layer (WL) as 
described by the energy diagram in Fig. 1. 

 

 

Fig. 1: The energies levels diagram shows the 
carriers transition and accompanying operations 
within the active QD LED layer. 

In addition, when reformulating the model of 
rate equations in the case of the presence of 
optical feedback, it is necessary to takes into 
account the phase of the electric field. 
Consequently, the complex field equation was 
separated from the photons number equation 
and the phase equation, as this model has been 
shown to describe many complex phenomena 
well, including periodic, pulsed, and irregular 
behavior, as well as complex bifurcation 
diagrams. The derivation and approximation 
necessary for our model can be used with Lang-
Kobayashi [10] by: 

 

1 ( )
(1 ) ( ) ( )

2 2 2

dE E t K i
i d E t E e E tsp
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  ....(1) 

here ( )( ) i tE t S e    is the amplitude of the 

complex normalized slowly varying electric 
field which given by the photon number S and 

the phase Φ in polar coordinates. Other 
parameters can be included in the following 
table: 

Table (1): parameters definition listed in Eq. (1). 

α Linewidth enhancement factor 

o  Solitary optical mode angular 
frequency 

K Measures the injected field strength 

2l c   Delay time in external cavity for 
distance l of mirror 

o    The phase shift of the light during one 
round trip in the external cavity 

c Speed of light. 

Eτ 
Electric field amplitude at the delayed 
time (t-τ) 

  Optical phase taken at the delayed time 
(t-τ). 

The relation of field has of

( ) ( ) 2sp spE t E t R   [11] where Esp(t) 

corresponding with the zero-mean random field 
for the stochastic function. The term Rsp in the 
photon number equation is used for the effect of 
spontaneous emission and is given by [12] 

spR An  and ( )

( )

F
A

V

 
 

                  (2) 

Where 

 β: spontaneous emission rate; 

 V: normalization volume; 

 F(w): normalized lineshape function; 

 ρ(w) :density of photon states for the 
uniform QD. 

Also, when investigating the causes of chaos 
and instability in non-linear optical systems, 
treatment of deterministic values becomes 
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possible in the light of verification in statistical 
processes. The goal is to transform the complex 
stochastic differential equation (SDE) for ( )E t  

into two real SDE for the photon number ( )S t  

and the phase of electric field ( )t . Neglecting 

the stochastic term this is just a transformation 
to polar coordinates, after that adding stochastic 
averages after completing the polar formula 
conversion process, the complex field equation 
becomes in terms of the number of photons and 
the phase of the electric field, in addition to the 
rate equations for the number of electrons in the 
QDs ( QDn ) and in the WL ( wln ) read: 

cos ( )
dS

dS S A n K S S w o
dt

                                                    

(3.a)  

1
sin ( )

2

d
d K S S w o

dt
    


                                                           

(3.b) 
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(3.c) 
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ndn J QDwl n nn wl c wl
dt e N d

                                                                      

(3.d) 

here, 𝐴 is the rate of spontaneous emission in 
the optical mode. The parameters  𝑑 , Γ are the 
absorption and output coupling rate of photons, 
𝛾   and 𝛾  are the non-radiative decay rates of 
the number of carriers in the upper levels and 
WL respectively; 𝑁   is the is the total number 
of QDs; and 𝐽 is the injection current, 𝑒  is 
electron charge,  𝛾   is the capture rate from WL 
into an empty quantum dot.  

The transition is homogeneously broadened for 
a three-level semi atomic system, where one 
can get from Einstein's equation [14] 

𝑑 = 𝐴𝑛                                           (4) 

here  𝑛  is the occupation number of the QD 
layer. In such a case, for the spontaneous 

emission coefficient and absorption coefficient 
have similar trajectory. For organic or 
semiconductor emitters, as realistic material 
systems, there remains the possibility of 
inhomogeneous broadened in the upper and 
lower levels. In order to establish a valid 
formula between the absorption and the 
spontaneous emission spectrum must be taken 
into account the population distributions at the 
lower and higher levels [15]. 

In the case of coupling with a self-optical 
feedback, the time-dependent phase has an 
important role because of the interaction of the 
phase with other variables of the signal and the 
medium. We can investigate numerically 
solving of the dynamics of QDLED under 
optical feedback by using the above equations. 
In [16], a solitary frequency rate equation, 
affective phase does not on the other variables 
and, thus, it is only described by the photon and 
carrier number rate equations. Nevertheless, it 
is not possible to cancel the role a time 
development of the phase under the influence of 
the coupled field, because the phase is 
associated with the presence of optical feeding, 
as is evident from two equations of the phase 
and the number of photons above.  

 

3 Chaos synchronization of delay-coupled 

QD LED  

We investigate theoretically in this 
section the examiner for chaos synchronization 
in the two QD LEDs which are coupling 
together and additionally each one received 
self- optical feedback. In Fig. 2 the basic 
coupling scheme is depicted. The rate equation 
mentioned in the previous section can be 
rewritten according to the coupling methods 
shown in the above figure for both the 
transmitter and receiver by adding the light 
transmission terms. 
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Fig. 2: Diagram of synchronization methods for two 
coupling chaotic systems under optical feedback. (a) 
Close loop coupling system, (b) open loop coupling 
system, and (c) mutual coupling system.  1: 
transmitter QDLED, 2: receiver QDLED. 

The filed equations for the transmitter 
and the receiver QD LED read 

1 *1 1 1 1 1 1 1 1 1

cos( )1 1 1 1

dS
d S S A n K S S

dt

w o
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  ......(5.b) 

where subscript 1 refers here to transmitter 
number 1. The rate equations for the receiver 
are written as follows 
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Here τc is delay-coupled systems with τ 
is delay-time of self-optical feedback. Kij is a 
coupling strength and ∅  is a coupling phase of 
each connection.  Where subscript 2 denotes the 
receiver QDLED, and Δω=ω1−ω2 represents to 
detuning of the angular frequency between the 
two coupled QDLEDs. The last terms in the last 
equations express the effect of the pairing with 
the signal sent by the transmitter. When open-
loop case the self-optical feedback strength is 
zero in the receiver system, (k2= 0), as in Fig. 
2.b. 

In Fig. 2.c we discuss chaos synchronization in 
mutually coupled QDLED modeled. Although 
the QDLED plays a role for the external mirror 
of the counterpart QDLED even without self -
optical feeding, systems can show an increase 
in additional perturbation due to mutual 
coupling. The rate equations for a QDLED 
transmitter are written by 

1 *1 1 1 1 1 1 2 2

cos( )1 1 1

dS
d S S A n K S S c

dt

w wtc o



  

     

   

    (7.a)  

11 *1 1 2 2
2

sin ( )1 1 1

d
d K S Sc

dt

w w tc o

 

  


 

   

             (7.b) 

Similarly, the receiver QLED rate equations are 
given by form as 

2 *2 2 2 2 2 2 1 1

cos( )2 2 2

dS
d S S A n K S S c

dt

w wtc o



  

     

   

(8.a)  
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12 *2 2 1 1
2

sin ( )2 2 2

d
d K S Sc

dt

w wtc o

 

  


 

               (8.b) 

In the three methods above of the coupling 
systems, there are two control ways of chaos 
synchronization: one is based on optical fed 
back as signal amplification phenomena and the 
second is complete chaotic synchronization. 
With two systems coupling, one QDLEDs 
playing the master role and the other being a 
slave, the residue of chaos synchronization is 
defined with the following equation: 

1 2

1

S S
Rchaos

S


                             (9) 

Where S1 and S2 are the intensities maximum of 
the transmitter and receiver. The effect of 
parameter asymmetry, especially the coupling 
strength between both the transmitter and 
receiver, is extremely important in applications 
for securing encrypted communications.  

The diagram of the chaos synchronization 
residue is depicted in Fig. 3, where 0 expresses 
the complete synchronization between the 
transmitter and receiver parameters. Fig. 3 (a) 
shows the residue of unidirectional coupling 
systems chaos synchronization. The acceptable 
residues for the parameter mismatches are large 
in closed-loop coupling systems chaos 
synchronization and we can expect asymmetry 
chaos synchronization. From figure, the chaos 
residues are always smaller than 0.5 of the 
average QDLED intensity variations for three 
values of delayed-time 0.07, 0.37 and 0.67 
respectively, because of the synchronization 
comes from signal amplification phenomena 
due to optical feedback, while asynchronous 
waveform comes from the transmitter signal. 
The subplot illustration is for case 0.67.  

By continuing to investigate the consistency of 
the transmitter and receiver signals, we note the 
similarity between them when the residual 
match of the signals varies by a few percent. 
Complete synchronization is achieved with high 
accuracy when matching the parameters as in 

Fig. 3(b) and at the same value of delayed-time 
in the previous figure, and the residue of 
synchronization increases rapidly with 
increasing parameter of the strength of 
coupling. The best symmetry of 
synchronization residues is also seen in the 
open-loop coupling system. Hence, there is a 
need to set strict conditions for the 
synchronization of successful chaos in the 
complete synchronization. 

From the results mentioned above, in the 
two delayed-coupled systems, the parameters 
must be identical to achieve the requirements 
for complete synchronization of the disorder, 
but it is desirable to note that there are certain 
ranges of discrepancies in the parameter 
mismatches that lead to a slight deterioration in 
the correlation relationship between the 
transmitter and receiver outputs. Achieve 
complete chaos synchronization in mutual 
coupled system see in Fig.4. It also notes that it 
is not always possible to get the best 
synchronization when the feedback strength is 
zero. 

The sudden transition to synchronization 
condition could also be described by calculating 
the mean of the coherence value for all 
oscillators in synchronized and non-
synchronized statuses. 

A value of 1 refers to coherence in the case of 
interdependence of the operations between x 
and y and the coherence takes values close to 
zero in the absence of any interaction at the 
frequency w, at certain values of the frequency, 
if the coherence is equal to 1, then the 
synchronization is complete and the two signals 
coincide at this frequency and counter 
completely from treatment of synchronization 
residue in the above results. Conversely, a 
coherence which is equal to 0 suggests that the 
signals are totally unrelated at the frequency. 
We can be observed the Interactions in linear 
stochastic systems employing cross-spectral 
analysis. For that, the cross-spectrum Pxy(f) 
which is the  Fourier transform of the cross-
covariance function of processes x and y, is 
normalized by the auto-spectra Pxx(f) which is 
the Fourier-transform of the auto-covariance  
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Fig. 3: Calculated chaos synchronization 
residue as a function of parameter mismatch 
(coupling strength). τc: coupled delayed time. 
(a) closed-loop system (behavior asymmetry) 
and (b) open-loop system (behavior symmetry) 
chaos synchronization. The parameter values 
are  𝐼 = 0.6, 𝑘 = 𝑘 = 6.2 × 10 and 
𝑤 = 𝑤 = 3.2 𝜋. 

 
 

Fig. 4: Calculated chaos synchronization 
residue as a function of coupling strength. The 
parameter values are τ=40, τc=70,  𝐼 = 5.9, 
𝑘 = 6.2 × 10 , 𝑘 = 0and 𝑤 = 𝑤 = 0.2 𝜋. 

 

function  of processes x and y. respectively, 
leading to the coherence function (Cxy(f)). The 
coherence is a function of frequency that 
measures the degree of linear dependency of 
two signals by testing whether they contain 
similar frequency components. It is: 

 

2
( )

( )
( ) ( )

P fxy
C fxy

P f P fxx yy
                        (10) 

Fig.5 presents the dependence of 
synchronization quality and the chaotic 
complexities on the mean complex value. In 
this condition, the synchronization quality is 
quantified by the coherence (cross correlation) 
among the entire oscillators output. The 
complexities of the chaotic optical systems are 
indicated by the correlation of the time series of 
the oscillator's intensities.  
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Fig. 5: The mean coherence value (C), when 
there is no coupling between the two chaotic 
systems (K12=0), the mean C value is closed to 
zero and around 1 for synchronization 
condition. (a) closed-loop system and (b) open-
loop system chaos synchronization. The 
parameter values are  𝐼 = 5.6, 𝑘 = 𝑘 =
6.2 × 10 and 𝑤 = 𝑤 = 3.2 𝜋. 

 

Generally, the synchronization degradation 
is attributed to the effect of the nonlinear 
saturation of the system. Here we explain this 
phenomenon from the two different 
perspectives, firstly as shown in Fig. 5 the 
coherence among the oscillators in low 
frequency range is much prominent, which 
indicates that the high frequency range. 

At small value of the coupling between the 
two chaotic systems (K12=0), high quality 
synchronization can be presented in overall 
range of coupling phases considered here. 
 
4 Conclusion 
In conclusion, chaos synchronization conditions 
with optical feedback in QDLEDs are 
discussed. In all methods coupling, the optical 
coupling phases and the mismatching strengths 
play a critical role for the signals 
synchronizability. The condition of the lineup 
corresponds to specific interference conditions, 
so the signals of both QDLEDs should interfere 
in such a way that each QDLED receives the 
same output signal, relative to its own phase. 
This agrees to the presence of an identical 
complete synchronization. During interference, 
the effective of phases may be similar to 
mismatches in the coupling strengths. Further, a 
different kind of measurement the 
synchronization phenomenon as reported. This 
method allows measuring the mismatch 
between the coupled systems. In this work, 
overall synchronization states were achieved by 
controlling and adjusting the states of the two 
coupled systems such as setting delay time and 
coupling strength while keeping the injection 
current steady. Moreover, we have realized 
theoretical synchronization in terms of the 
chaos synchronization residue and coherence of 
the response times, measured between 
interacting QDLEDs units. From both the chaos 
synchronization residue and coherence have 
been evaluated what revealed the symmetric 
and asymmetric increase in its value as the 
coupling strength was modulated. 
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